Math 332
Final Exam preparation list
Spring 2010

1) Complex numbers:

1. Cartesian representation, addition/subtraction, division (1/z=2 /|z)*), complex conjugation.
2. Complex exponential and Euler equation
3. Polar representation of complex numbers: branches of argument

z=|z|exp{iargz } =|z| exp{i Argz +i2nk }

4. Properties of |z| and z, triangle inequalities

lziz, 1=z [z, 15 |z /2, [=lz /]2, |; | z]|=] 2|
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5. Complex roots
6. Sets in the plane (review lines and circles, z = zp+ r exp(i £) )

2) Functions of complex variable:

l.

2.
3.

e

Function as a Mapping
Limits and Continuity
Analyticity: f(z) is analytic at z, if its derivative exists there, as defined by a 2D limit
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Cauchy-Riemann equations hold if the function (u + i v) is analytic : u,=—v,, u,=—v,
Harmonic functions and harmonic conjugates
Solving Laplace’s equation with Dirichlet boundary conditions

3) Elementary functions

1.

Polynomials and Rational functions: fundamental theorem of algebra, polynomial deflation,
zeros, poles, partial fractions

Complex exponential, trigonometric, hyperbolic functions
exp z = exp(x)exp(i y) = exp(x) (cos y + i sin y)
sin z = sin xcosh y +icos xsinh y

cos z = cos xcosh y —isin xsinh y

Logarithmic function: branches and branch cuts

log z=log{ |z| exp(iargz) } =Log|z| +iargz=Log|z| +i {Argz + 2nk}
Complex powers, inverse trig and inverse hyperbolic functions

Z"=exp(wlogz)

sin”!(z) = —i log {iz+ (1 - )"} (Derive, don’t memorize)

cos '(z) =—ilog { z+ (z*~1)"?} (Derive, don’t memorize)

tan '(z) = i/2 log {(1-iz)/ (1 +iz)} (Derive, don’t memorize)



4) Contour integral:

1. Smooth arcs, simple closed curves and their parametrization; a contour as a sequence of
directed smooth curves

2. Contour integral calculation methods:

1. Limit of a Riemann sum: lim Z f(z)Az,

max|Az; |—>0
ii. Contour parameterization: [ Az2)dz= I Az(2)) z'(¢) dt
iii. Antiderivative (| Az) dz = F(zena) — F(zstart) )
iv. Changing contour of integration (see Cauchy integral theorem below)
v. Some loop integrals equal zero (see Cauchy integral theorem below)

. . ) ) dz 0,n=1
3. Important integral (derive using z = R exp(i t) ): — =

emn(2-2,) 2L n=1
4. Calculating upper bounds on integral modulus:

| f()de| < max | f(2)| £(7)

5. Theorem: if f{z) is continuous in domain D, the following statements are equivalent:
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6. Cauchy integral theorem:
If f{z) is analytic in a simply-connected domain D, the above three properties (a,b,c) hold.

e Corollary 1: if a function is analytic between two simple contours with same endpoints or
between two simple closed curves, the two contour integrals are equal.

e Corollary 1*: if there is a continuous deformation of one contour into another (without
crossing non-analyticities, with endpoints fixed), the two integrals are equal.
7. Corollary of above two theorems: Loop integral is zero if either of the following is true:
(1) f(z) is analytic inside and on the loop
(2) fz) has a continuous anti-derivative on the loop (Example: 1/z%)
8. Cauchy Integral Formula:

If f(z) is analytic in D and z, is inside simple closed contour ¥ lying in D, then

fez )——chf Gzl oz, = 2 <j>f (Z)di]
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Corollary: analytic functions only reach their max modulus on the boundary of a domain.
Analytic functions defined on unbounded domains are unbounded.

Corollary: bounds on analytic functions: ‘ " (z, )‘ <



5) Series representation of analytic functions

1. If a function is analytic at z,, it has a Taylor series representation in a neighborhood of z,:

“(z,)
f(z)= Za (z-z,)", where a, _/ n!Z 2m<j3 (g(i)o)il,

T.S. converges in |z-z9|<R, converges uniformly in |z-zo| < R’< R, and diverges in |z-zo| > R

contour C contains z,

2. Ifa function is analytic in 7<|z-zg|<R, it has a Laurent series representation there:
f(z)= Z a(z—z) = Zan (z—2z,)" + Zaw(z—zo)_”
n=0 n=0
¢ f(edg
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The first term (positive-power series) converges in |z-zg|<R, while the second term
(principal part) converges in |z-zo|>r. Laurent series diverges outside of the ring r<|z-zo|<R

where C is inside the ring and contains z,,

3. Convergence radius: R =lim|a; /a,,, | (fromratio test) R =1/limsup {la ;| (from root test)
‘/*)OO Jj—x0

4. Use term-by-term operations to derive Taylor and Laurent series, avoiding explicit
differentiation or integration. Use a simple shift to expand around non-zero z.

0 o0

. . 1 = !
5. Remember important series = ZZ”, expz = Z— Log(1+2z) = Z(—l)” Z—,
n
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6. If a function has an isolated singularity, it has a Laurent series expansion centered at that point.
Isolated singularities are:

(1) Removable singularity: a , =0 for all » > 0 (Laurent series = Taylor series)

(2) Pole of order m: a_, =0 for all n > m . Function modulus is infinite at the pole.

(3) Essential Singularity: infinitely many non-zero a_, (where n > 0). Function assumes
every possible value with possibly one exception in any neighborhood of E.S.

7. A function has no series representation centered on a non-isolated singularity such as a branch
point, branch cut, or an accumulation point (e.g. 1/sin(1/z) at zp=0)

8. Alternative definitions of a zero: z, is a zero of order m of f(z) if:
(1) f"(z,)=0 forn<m,but " (z,)#0

(2) f(2)=(z-z2,)" g(2), where g(z,) # 0
3) f(2)=a,(z-z)" +a, (z-z)"" +a,,,(z—z,)"" +..., wherea, #0
9. Alternative definitions of a pole: z, is a pole of order m of f{z) if:

(1) 1/f(z) has a zero of order m at z,

) f(z)—( g(z )) where g(z,) #0; (3)

a

-y ., wherea , #0

a,
G 72)= (z—z)" " (z—z, )m_l



6) Cauchy’s Residue Theorem and applications:

1. Term-by-term integration of a Laurent series gives:

CI) f(z)dz =2ri a_,, where C contains a single isolated singularity z,,
C

a1 is called the residue of function f{z) at z

2. Therefore, if f(z) is analytic inside C except for the isolated singularities z;, then:

Sﬁf(z) dz = Zﬂizn:Res(f; z))

3. Residue calculation methods:
1) Res(f; zo)=a.i (definition; works for all isolated singularities)

2) Pole of order m: just count the powers, and you get the Cauchy Integral Formula:

TG N TP B . B d" (f(2)(z-z)")
(z=z)" ) " (m=1)! dz™! |HZU (m—1)! dz""
3) Simple pole: f(z)=p(z)/q(z), where p(zo) #0, g(zo) =0:
Res(p(z)'z _p(z)
q(2)"") q'(z)

4. Special integrals taken using residue method:

1) Trigonometric integrals over a whole period: make a substitution z = exp(i t)

2) Improper integrals over rational functions from —oo to +oo : complete the integration contour
in the top or bottom half-plane

3) Improper integrals involving trig functions — replace trig functions with complex
exponentials; complete the integral in the top or bottom half-plane; use the Jordan’s Lemma.

4) Poles on the real axis — use indented contour. Integral over half a circle surrounding a
simple pole is equal 27i times half the residue.

5) Integrals involving multi-valued functions — integrate over the branch cut

6) Improper integrals of rational functions from 0 to co which are neither even nor odd —
multiply integrand by zero branch of log z; integrate over the branch cut.

Jordan’s Lemma:

C.ISR(z)eimzdz < ﬁm%x | R(z) |, where C,, is a semi-circle in the top half-plane
c m 2<%y
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Properties of functions f(z) analytic in domain D:

1) f(z) can be expressed as a function of z = x+i y only

2) df/dz exists in D (definition of analyticity)

3) All higher-order derivatives also exist in D (given by the C.LF.)

4) f(z) has a Taylor series representation in a neighborhood of any point in D

5) Cauchy-Riemann identities hold (v, = vy, u, = —vy)

6) u=Re(f) and v=Im(f) are harmonic in D

7) f(z) is uniquely determined by its values over any single curve or open set in D.
[ C.LLF. tells us how to determine f{z) from its values along a loop around z]

8) fl(z) at the center of any circle in D equals it average over the entire circle

9) If(z)| can only reach its maximum on the boundary of D

10) If D is unbounded, then f{z) is unbounded

11)If D is simply connected, then Cauchy Integral Theorem applies:
a) All loop integrals of f{(z) in D are zero, and all open contour integrals are path independent

b) f(z) has an antiderivative in D



